End of $19^{\text {th }}$, beginning of $20^{\text {th }}$ century:
EIM was well established
Biggest problems in EM theory:

1. light is a wave of oscillating $\vec{E} \$ \vec{B}$ fields \Rightarrow all known oscillations involve propagation of a distarbance
egg. wafer waves: waves travel along sulace of water-water level is "distutid" \rightarrow no water, no waves
e.g. Lond. pressure disfer hance in air \rightarrow no air, no sound
so what is berm disturbed in the case of light?
\Rightarrow guess: " then" - invisible "fabric"
note: the "stifle" the medium, the faster the propagation
ex: speed of sound in air. $-340 \mathrm{~m} / \mathrm{s}$
lead: $1210 \mathrm{~m} / \mathrm{s}$
aluminum: $6320 \mathrm{~m} / \mathrm{s}$
speed of light in "ether": $300,000,000 \mathrm{~m} / \mathrm{s}$
since $c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$, ether should be extremely stiff! but it's invisible?
2. ware equation for EM waves in a vacuum wino sources (starting w/ Maxwell's equations)

$$
\frac{\partial^{2} E}{\partial x^{2}}-\varepsilon_{0} \mu_{0} \frac{\partial^{2} E}{\partial t^{2}}=0
$$

this equation describes a propagating wave along x-direction:

$$
E=E_{0} \cos (k x-\omega t) \text { where } \frac{\omega}{k}=\frac{1}{\sqrt{\varepsilon_{0} \mu_{0}}}=v
$$

- This says $c=$ constant which implies that there is some absolute reference hame where $v=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ o EM radiation
- Then you can measure your velocity in the ether by measming speed of light in different directions
\Rightarrow if ether exists then it would be the reference name if absolute rest
$\Rightarrow \ldots$ or... if there was an absolute ref frame then that means there's an ether

Reference flame: the [lame where you are not mooing
ex! you dive it acer. The car is your reference frame. You pass me, I'm in the reference lame of the ground
let car have velocity v relative to ground

in the car someone throws a ball from hack to /rout seat w/velocity u
\Rightarrow what is bal's velocity (Mg) relative to ground?
The answer is easy: $U_{g}=v+u$

More rigorous derivation = coordinate systems
Let O be reference hame A ground and O^{\prime} "." "in the car

$v=\frac{d x}{d t}$ where " x " is any coordinate position of the car sn fore of
$x^{\prime}=$ coordinate position inside the car (relative to some agreed upon point of the car)
then x on ground is related to x^{\prime} in the car by how far the car has moved in time t
$x=x^{\prime}+v t$ "galilean" hans formation
now calculate $U_{g}=\frac{d x}{d t}$ velocity of ball relative to ground

$$
u_{y}=\frac{d x}{d t}=\frac{d}{d t}\left(x^{\prime}+v t\right)=\frac{d x^{\prime}}{d t}+v=u+v
$$

how position of ball in car hame ot is changing
Problem w/EM waves: if you shive light in the car forward and I measure its velocity on the ground, Galileo says I should get

$$
u_{\text {light }}=c+v
$$

speed of speed fo
light in light in car in ground's (name ground's [rame flame

$$
\text { so } U_{\text {light }}>c \text { violates Maxwell's egad }
$$

So to measure your velocity relative to the ether, yon are measming the absolute velocity inside the universe where $v=0$ atseslute

Michelson- Morley experiment 1887 , Case Western university, Cleveland

Built interferometer:

- light from source hits a "half mirror" and splits beam into 2 parts
part 1 . halt light reflected up, then re lects back down by mirror 1 (dashes).
It then hit half mirror again and half goes thun to detector (igure other hal f)
part 2. other half goes then half mirror and is re (lect fed back by mirrors 2 (dotted).
It then hits half mirror again? half gets reflected down to defector
Make dist com half mirror to the 2 mirrors the same: L

Bo the beams inter fee whack other at detector.
If there were no ether then you could adjust the distances so that the 2 waves have a path difference $\Delta r=n \lambda$ where n is some number.
The waves would interfere constructively \&' you would see a bright spot.
Next say you were moving wlsome velocity relative to the ether along horizontal.

$$
\begin{gathered}
x=x^{\prime}+u t \\
o \Delta x=\Delta x^{\prime}+u \Delta t
\end{gathered}
$$

$t_{1}=$ time for horizontal beam to go from half mirror to fall mirror
t_{2} = time (rom full mirror back to half
$t_{1}>t_{2}$ because mirror is moving in the same direction as light
remember light moves at $v=C$ in ether only!! fricizontal seam

- beam travels with vel = u in dir parallel to earth moving then ether
- horizontal beam goes dist L in earth pa me in time t,
dist in ether is $c \Delta t_{1}=L+u \Delta t$,
on return from mirror to half splitter:

$$
\begin{aligned}
c \Delta t_{2}= & L-u \Delta t_{2} \\
& 4 \\
& \text { light is anti parallel to } \vec{u}
\end{aligned}
$$

$\Delta t_{1}>\Delta t_{2}$ because on l st leg, destination (mirror) is moving away from starting pt (half mirror)
on return trip destination is moving towards starting point
calculate total time in ether frame:

$$
\begin{aligned}
c \Delta t_{1}=L & +u \Delta t_{1} \\
(c-u) \Delta t_{1} & =L \\
\Delta t_{1} & =\frac{L}{c-u}=\frac{L}{C} \frac{1}{1-\beta} \quad \beta \equiv u / c \\
\Delta t_{2} & =\frac{L}{C+u}=\frac{L}{C} \frac{1}{1+\beta}
\end{aligned}
$$

here you see $\Delta t_{1}>\Delta t_{2}$
total time is $\Delta t_{1}+\Delta t_{2}=\frac{L}{c}\left(\frac{1}{1-\beta}+\frac{1}{1+\beta}\right)$

$$
=\frac{L}{c}\left(\frac{1+\beta+1-\beta}{1-\beta^{2}}\right)=\frac{2 L}{c} \frac{1}{1-\beta^{2}} \quad \text { let } \gamma^{2}=\frac{1}{1-\beta^{2}}
$$

$\Delta t_{h}=\frac{2 L \delta^{2}}{c}$ "horizontal" time Δt_{h}

Vertical beam
This is the beam that is 1 earth's motion thun ether
 total distance is $2 \sqrt{L^{2}+u \Delta t^{2}}$ this has to be zcDt in ether hame so $2 c \Delta t=2 \sqrt{L^{2}+(u \Delta t)^{2}}$

$$
\begin{aligned}
& c^{2} \Delta t^{2}=L^{2}+u^{2} \Delta t^{2} \\
& L^{2}=\left(c^{2}-u^{2}\right) \Delta t^{2} \\
& \Delta t=\frac{L}{\sqrt{c^{2}-u^{2}}}=\frac{L}{c} \frac{1}{\sqrt{1-\beta^{2}}}=\frac{L \gamma}{c}
\end{aligned}
$$

total time $\Delta t_{v}=2 \Delta t=\frac{2 L \gamma}{C}$
and $\Delta t_{h}=\frac{2 L \gamma^{2}}{C}$
so $\Delta t_{h}>\Delta t_{V}$
let's say $\beta \ll 1$

$$
\begin{aligned}
\gamma= & \left.\frac{1}{\sqrt{1-\beta^{2}}}=\left(1-\beta^{2}\right)^{-1 / 2} \sim 1+\frac{1}{2} \beta^{2}\right) \text { expand and } \\
\gamma^{2} & =\frac{1}{1-\beta^{2}}=\left(1-\beta^{2}\right)^{-1} \sim 1+\beta^{2} \quad \text { keep smallest } \\
=\Delta t_{L}-\Delta t_{v} & =\frac{2 L \gamma^{2}}{C}-\frac{2 L \gamma}{C} \\
& \sim \frac{2 L}{C}\left(1+\beta^{2}-\left(1+\frac{1}{2} \beta^{2}\right)\right) \sim \frac{2 L}{C} \frac{\beta^{2}}{2} \\
& =\beta^{2} \frac{L}{C}
\end{aligned}
$$

in that time, horizontal light goes dist

$$
d=c \Delta t=\beta^{2} L
$$

light has wavelength ~ 500 nm if $d=\beta^{2} L \cong 50 \mathrm{~nm}$, your would see it in the inter ference pattenchanging
for $h=10 \mathrm{~m}$ interferometer arm:

$$
\begin{aligned}
d=50 \times 10^{-2} & =\beta^{2} \cdot 10 \mathrm{~m} \\
\beta^{2} & =50 \times 10^{-10} \\
u=c \times \sqrt{50 \times 10^{-10}} & \equiv 3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}} \cdot 7 \times 10^{-5} \\
& =21 \times 10^{3} \mathrm{~m} / \mathrm{s} \\
& \sim 2 \times 10^{4} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

1. take interferometer \& measure interference pattern, then adjust one full mirror distance so that you see a max
2. turn it at right angle -should see a big change
3. do the same 6 months later when on opposite side of sun

No effect seen!!!

No experiment ever tried has ever seen any ether.

So if the ether doesn't exist, then

1. There is no absolute re frame. So no also lute velocities
Conclusion: the laws of nature only depends on relative velocities
move acemate: laws if nature are the same in all $r e \mid$ hames that have constant v ('inertial frames)
2. Maxwell's equations say $v_{\text {light }}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
\Rightarrow but in which re [frame? all frames? this violates common sense!

- ship has a laser shining light along direction of motion.
person on ship can measure light velocity by timing beam as it passes than the two detectors.
\Rightarrow wall measure $v_{\text {light }}=C$ on ship
- person on ground can also measure light velocity w/ duplicate detectors on the ground
will measure $U_{\text {light }}=C$ on ground! and not $v_{\text {lieut }}=C+v_{\text {ship }}$
These two postulates are Einstein's Postulates
(H2 says that the speed of light is the largest possible relative velocity

How can both postulates be true and the Galilean trans (oration hold?
\Rightarrow figuring this ont is one of Einstein's many contributions

Simultaneity $\dot{\text { in time }}$

person (1) on ground, person (2) on car whet $=v$ moving to right.
lightening strikes the ground the same distance R to left and Night of person (1)
(i) says lightning bolts were simultaneous because the light arrived at (i) at the same time
(2) light ring flash took t_{1} seconds to get to person (1)
(3) (2) goes a distance $d_{2}=v t_{1}$ in time t_{1} and then sees 1朝 flash

(2) sees the flash (rom the bolt on right it, then the f lash from the left nest
so (2) disagrees that the 2 events (each flash is an event) were simultaneous (at the same time)

But - postulate q says all inertial re pence (names are equivalent
Therefor: simultaneity must not be anything fundamental
Therpre: time is not absolute!
\Rightarrow implies that we have to modify
Galilean transformation

0] is our re frame
O' moves w/rel velocity v in 01

Galilean: $\quad x=x^{\prime}+v t$ needs adjustments

1. try $x=f(v)\left(x^{\prime}+v t\right)$
where $f(v) \rightarrow 1$ as $v \rightarrow 0$
since Galilean does seem fo work when $v<L C$ (the "real "world)
2. Since five is relative and not absolute, then time could be dillerent in the 2 [names 0 : 0^{l}]
so $x=f(v)\left(x^{\prime}+v t^{\prime}\right) \quad t \neq t^{\prime}$
new questions:

- how to calculate f(v)?
- how does time trans form?

- 2 mirrors on train moving ω /velocity v in 01
- Hair is O'J frame
- bounce a beam of light between the mirrors
\Rightarrow takes Δt^{\prime} time to go distance $2 L$ in fain, velocity of light is c

$$
\therefore z L=C \Delta t^{\prime}
$$

- in flame 0J, we see this

Distance fain travels in time $\Delta t: D=v \Delta t$
Distance light travels a long diagonal : $d=c \Delta t$

Distance light travels: $\left(\frac{d}{2}\right)^{2}=\left(\frac{D}{2}\right)^{2}+L^{2}$ and $d=c \Delta t$ since light travels at bel C in re flame Q D
so

$$
\begin{aligned}
& \left(\frac{d}{2}\right)^{2}=\left(\frac{D}{2}\right)^{2}+2^{2} \\
& \left(\frac{c \Delta t}{2}\right)^{2}=\left(\frac{v}{2} \Delta t\right)^{2}+\left(\frac{C \Delta t^{\prime}}{\varepsilon}\right)^{2}
\end{aligned}
$$

rearrange, get rid of "2":

$$
\begin{aligned}
& c^{2} \Delta t^{2}-v^{2} \Delta t^{2}=c^{2} \Delta t^{\prime 2} \Rightarrow \Delta t^{\prime}=\Delta t \sqrt{1-\frac{v^{2}}{c^{2}}} \\
& \text { de line } \gamma \equiv \frac{1}{\sqrt{1-\beta^{2}}} \Rightarrow \Delta t=\Delta t^{\prime} \gamma
\end{aligned}
$$

note: $Q^{\prime \prime}$ is hame where events are happening at locations (X^{\prime}) that are not changing.
o' is the "proper frame" and
Δt " is the "proper time" $\equiv \Delta L$
Proper time is the time in the frame where position isu't changing
ex: you are on an airplane and hold your breath for 60 sec .
in your (hame, position is it changing so proper time $\Delta \tau=60 \mathrm{sec}$
then a time interval in some have moving w/ velocity v relative to proper frame is Δt and

$$
\Delta t=\gamma \Delta \tau \quad \gamma=\frac{1}{\sqrt{1-\beta^{2}},} \beta \equiv 0 / k
$$

ΔT is always the shortest time interval than the infernal in any other (rave
This is called "time dilation"
ex: you are moving $w /$ velocity v relative to me. a year goes by in your frame
$\Delta \tau=1$ year
what do I measure?

$$
\Delta t=\gamma \Delta \tau
$$

if $v=10,000 \mathrm{mph}:$

$$
\begin{aligned}
& v=10^{4} \frac{m i}{h r} * \frac{5280 f f}{m i} * \frac{1 \mathrm{~m}}{3.28 f+} * \frac{1 \mathrm{hr}}{36005} \\
&=10^{4} \mathrm{mph} * 0.45 \frac{\mathrm{~m} / \mathrm{s}}{m p h}=4500 \mathrm{~m} / \mathrm{s} \\
& \beta=\frac{v}{C}=\frac{4500}{36.10^{8}}=1.5 \times 10^{-2 q} \\
& \gamma=\frac{1}{\sqrt{1-\beta^{2}}}=\left(1-\beta^{2}\right)^{-1 / 2} \approx 1+\frac{1}{2} \beta^{2} \sim 1
\end{aligned}
$$

what if $\beta=0.1$? $\quad\left(v=3 \times 10^{7} \mathrm{~m} / \mathrm{s}=18,600 \mathrm{mi} / \mathrm{s}!\right)$

$$
\begin{aligned}
& \gamma=\frac{1}{\sqrt{1-0.1^{2}}}=1.005 \\
& \Delta t=1.005 \Delta t=1.005 y \\
& 0.005 y_{1} * \frac{365 d}{y}=1.825 \text { days! }
\end{aligned}
$$

ex: a muon is a particle that decays on average after $2.2 \mu \mathrm{~s}$
muons are made constantly in the upper atmosphere when cosmic rays hit the atmosphere. They are created with velocities: $\beta=0.99$ wot earth frame
How long do the muons line in earth's
frame?
$\Delta \tau=2.2 \mu s$ in muon's rest hame (where it is standing still)

$$
\Delta t_{\text {earth }}=\gamma \Delta L=\frac{2.2 \mu s}{\sqrt{1-0.99^{2}}}=7.09 \times 2.2 \mu \mathrm{~s}
$$

in 15.6 ps muons travel distance (in eartli's (name)

$$
\begin{aligned}
D=v t & =.99 \mathrm{c} * 15.6 \mu \mathrm{~s} \\
& =0.99 \times 3 \times 10^{8} \frac{\mathrm{~km}}{\mathrm{~s}} \times 15.6 \times 10^{-6 \mathrm{~s}} \\
& =4631 \mathrm{~m}=4.6 \mathrm{~km} \sim 3 \text { miles }
\end{aligned}
$$

"Twin paradox"
Twins Alpha i Beta, same age
Alpha stays on earth.
Beta flies away on spaceship, $\beta=0.6$

Alpha: Al
Beta: O towards nearest star α-Centaneri, 5 Hoys curvy

$$
\beta=0.6 \text { so } \gamma=\frac{1}{\sqrt{1-\beta^{2}}}=\frac{1}{\sqrt{1-0.6^{2}}}=1.25
$$

Alpha frame (earth): Beta goes 5 leys at

$$
\beta=0.6
$$

$$
d=v \cdot \Delta t_{\alpha}=\frac{v}{c} *\left(\Delta t_{\alpha} \cdot c\right)
$$

note: $c \cdot \Delta t$ is distance light travels in fine Δt $\frac{v}{c}=\beta$ dimension less number
so if we measure distances in light-time [e.g. lisht-years) and time in years then $v \equiv \beta$
so $v=0.6$ and $d=$ light -years so $\Delta t_{\alpha}=$ years
$\Delta t_{\alpha}=\frac{d}{v}=\frac{51+\text {-years }}{0.6}=8.3$ years time interval in Alpha flame

Alpha measure's Beta clock fine:

$$
\begin{aligned}
& \Delta t_{\alpha}=\gamma \Delta t_{\beta} \\
& \because \Delta t_{\beta}=\frac{\Delta t_{\alpha}}{\gamma}=\frac{8.3 \mu}{1.25}=6.7 \mathrm{yss}^{\prime}
\end{aligned}
$$

Beta tuns around and heads home at same velocity
total time in Alpha (earth) fame:

$$
\Delta t_{\alpha}=2 \times 8.3=16.6 \mathrm{gss}
$$

total time in Beta (ship) frame:

$$
\Delta t_{R}=2 * 6.7=13.4 \mathrm{~ms}
$$

Alpha is now Olden than Beta!
Relativity lets goo go into the future!
Why does this work? Since velocity is relative and the journey is symmetric why a different age?
Because Beta had to accelerate at some point. That makes the 2 frames unequal jot syunme tic?
Time dilation covers time intervals
\Rightarrow what about length intervals

shine a light in proper (came it hits a nirror a distance L away and bounces Back

So $c \Delta t^{\prime}=2 L_{0} \quad \Delta t^{\prime}$ is transit time in 0^{\prime}
in [name 0] the time to go [rom sone to ruler is measured to be Δt_{1} and the distance is L which maybe is not the same as L_{0}.
total distance light traveled in $0>$ to mirror

$$
d_{1}=L+v \Delta t_{2}=c \Delta t_{1}
$$

so $L=(c-v) \Delta t$,
or $\Delta t_{1}=\frac{L}{C-v}$
on return kip, mirror to source, measmed Δt_{2}

$$
\text { and } d_{2}=L-v \Delta t_{2}=c \Delta t_{2}
$$

so $\Delta t_{2}=\frac{L}{c+v}$
then $\Delta t=\Delta t_{1}+\Delta t_{2}=\frac{L}{C-v}+\frac{L}{c+v}$

$$
\begin{aligned}
& =\frac{L(c+v+c-v)}{(c-v)(c+v)}=\frac{2 L C}{c^{2}-v^{2}} \\
\Delta t & =\frac{2 L}{c} \frac{1}{1-v^{2}\left[c^{2}\right.}=\frac{2 L}{c} \gamma^{2} \\
\Delta t^{\prime} & =\frac{2 L_{0}}{c}
\end{aligned}
$$

and we know that $\Delta t=\Delta t^{\prime} \gamma \quad\left(\Delta t^{\prime}=\right.$ proper time $)$
so $\quad \frac{2 h \gamma^{2}}{c}=\left(\frac{2 h_{0}}{c}\right)^{\gamma}$

$$
L=\frac{L_{0}}{\gamma} \quad L<L_{0} ?
$$

This is called lorenty contraction on length "
ex: a spaceship goes at $\beta=0.9$ and is 100 m long. This means in proper frame Ot the space ship it is measmed to be 100 m ($L_{0}=100 \mathrm{~m}$)
what is the length on earth's hame where it goes at $\beta=0.9$?

$$
\gamma=\frac{1}{\sqrt{1-\beta^{2}}}=\frac{1}{\sqrt{1-0 . q^{2}}}=2.3
$$

on earth $L=\frac{L_{0}}{\gamma}=\frac{100}{2.3}=43.6 \mathrm{~m}$!
how can this be?
It's because ${ }^{\prime}$ the relativity δ simultaneity. on earth as the ship passes your 100 m Nulen , you record the position of the front and back
of the ship ATT THE SAME TIME I!
But on the ship, they will say you measmed the (cont, then the back.
But this means that you could have the 100 m ship in a room with pout \& rear doors closed at same time Lin your (rame) and it will fit!

How to use this?
Galilean: $\left.\begin{array}{rl}x & =x^{\prime}+v t^{\prime} \\ t & =t^{\prime}\end{array}\right\}$ this is very accurate!
Relativist tic transformation has to reduce to Galilean when $v \rightarrow 0$
try $x=f(v)\left(x^{\prime}+v t^{\prime}\right)$
and $f(v)=f(-v)$ and

$$
f(0)=1
$$

if you reverse frames, then O goes at vel -V wish respect to $O^{\prime \prime}$
and $x^{\prime}=x-v t$
So thy $x^{\prime}=f(v)(x-v t)$ relativistic This also works for intervals:

$$
\Delta x^{\prime}=f(v)(\Delta x-v \Delta t)
$$

Now we measure the length of a moving object:
it has length ho in the proper frame

$$
\Delta x^{\prime}=L_{0}
$$

in 0J, we measure the length by recording
the beginning ends of the moving slipect with a station any rules

$$
\uparrow \longleftarrow \Delta x \rightarrow \uparrow
$$

we get a length $L=\Delta x$
when we record the inter values, we do so simultaneously at both ends
so $\Delta t=0$ between the events (recording)
transforming back:

$$
\Delta x^{\prime}=f(v)(\Delta x-v \Delta t)
$$

But $\Delta t=0$

$$
\text { so } \begin{aligned}
\Delta x^{\prime} & =f(v) \Delta x \\
L_{0} & =f(v) L=f(v) \frac{L_{0}}{\gamma}
\end{aligned}
$$

So $f(v)=r$
so the coordinate kans formations are:

$$
x=\gamma\left(x^{\prime}+v t^{\prime}\right)=\gamma\left(x^{\prime}+\beta e t^{\prime}\right)
$$

$$
x^{\prime}=\gamma[x-\beta c t]
$$

$y^{\prime}=y$ (perpendicular to \vec{v})
These are relativistic trans (rations of position
For previous under example:

$$
\begin{aligned}
& \Delta x=\gamma(\Delta x^{\prime}+\underbrace{\beta c \Delta t^{\prime}}) \\
& \Delta x=\frac{L_{0}}{\gamma}, \Delta x^{2}=L_{0} \\
& \text { So } \frac{L_{0}}{\gamma}=\gamma\left(L_{0}+\beta c \Delta t^{\prime}\right) \\
& L_{0}\left(\frac{1}{\gamma}-\gamma\right)=\gamma \beta c \Delta t^{\prime}
\end{aligned}
$$

$\Delta t^{\prime}=\frac{L_{0}\left(\frac{1}{\gamma}-\gamma\right)}{\gamma \beta C}$ that's what a person in ship will say is the time dill between the 2 measurements in 0

$$
\frac{\frac{1}{\gamma}-\gamma}{\gamma}=\frac{1}{\gamma^{2}}-1=\left(1-\beta^{2}\right)-1=-\beta^{2}
$$

so $\Delta t^{\prime}=-\frac{L_{0} \beta}{C}$
or $c \Delta t^{\prime}=-L_{0} \beta$
note $\Delta t^{\prime}=t_{2}-t_{1}$ so $\Delta t^{\prime}<0$ means t_{2} is before t_{1}
how does time trans [om?
back to $\Delta x^{\prime}=\gamma(\Delta x-v \Delta t)$
then $\Delta x=\frac{\Delta x^{\prime}}{\gamma}+v \Delta t$
to transform to other frame switch' and make $v \rightarrow-v$ and swap "prime"
then $\Delta x^{\prime}=\frac{\Delta x}{\gamma}-v \Delta t^{\prime}$

$$
=\gamma(\Delta x-v \Delta t) \text { (am equs }
$$

so $\frac{\Delta x}{\gamma}-v \Delta t^{\prime}=\gamma(\Delta x-v \Delta t)$

$$
\begin{gathered}
\Delta x\left(\frac{1}{\gamma}-\gamma\right)+\gamma v \Delta t=v \Delta t^{\prime} \\
\frac{1}{\gamma}-\gamma=\frac{1-\gamma^{2}}{\gamma}=\frac{1-\frac{1}{1-\beta^{2}}}{\gamma}=\frac{1-\beta^{2}-1}{\gamma\left(1-\beta^{2}\right)}=-\gamma \beta^{\frac{1}{\gamma^{2}}} \\
\text { so }-\gamma \beta^{2} \Delta x+\gamma v \Delta t=v \Delta t^{\prime} \\
v=\beta c \text { so } \beta c \Delta t^{\prime}=\gamma \beta c \Delta t-\gamma \beta^{2} \Delta x \\
c \Delta t^{\prime}=\gamma(c \Delta t-\beta \Delta x)
\end{gathered}
$$

This is full Lorentz transformation:

$$
\begin{aligned}
& \Delta x^{\prime}=\gamma(\Delta x-\beta c \Delta t) \\
& c \Delta t^{\prime}=\gamma(c \Delta t-\beta \Delta x)
\end{aligned}
$$

and swapping ka mes:

$$
\begin{aligned}
& \Delta x=\gamma\left(\Delta x^{\prime}+\beta c \Delta t^{\prime}\right) \\
& c \Delta t=\gamma\left(c \Delta t^{\prime}+\beta \Delta x^{\prime}\right)
\end{aligned}
$$

note:

$$
\begin{aligned}
& (c \Delta t)^{2}-(\Delta x)^{2}= \\
& \gamma^{2}\left(c \Delta t^{\prime}+\beta \Delta x^{\prime}\right)^{2} \\
& -\gamma^{2}\left(\Delta x^{\prime}+\beta c \Delta t^{\prime}\right)^{2} \\
= & \gamma^{2}\left[\left(c \Delta t^{\prime}\right)^{2}+2 \beta c \Delta t^{\prime} \Delta x^{\prime}+\beta^{2} \Delta x^{\prime 2}\right. \\
& \left.-\Delta x^{\prime 2}-2 \beta c \Delta t^{\prime} \Delta x^{\prime}-\beta^{2} c^{2} \Delta t^{\prime 2}\right] \\
= & \gamma^{2}\left[\left(c \Delta t^{\prime}\right)^{2} \frac{\left(1-\beta^{2}\right)}{\frac{1}{\gamma^{2}}}+\Delta x^{\prime} \frac{\left(\beta^{2}-1\right)}{-\frac{1}{\gamma^{2}}}\right] \\
= & \left(c \Delta t^{\prime}\right)^{2}-(\Delta x)^{\gamma^{2}}
\end{aligned}
$$

so $(-\Delta t)^{2}-(\Delta x)^{2}$ is invariant same in all hames
ex: take 2 "events" in (name 0 event 1: at $X_{1,} t_{1}$

$$
\begin{aligned}
& \text { " } 2 \text { at } x_{2}, t_{2} \\
& \Delta x=x_{2}-x_{1} \\
& \Delta t=t_{2}-t_{1}
\end{aligned}
$$

then in any frame moving w velocity v in (rame O (the O^{\prime} frame)

$$
(c \Delta t)^{2}-\left(\Delta x^{\prime}\right)^{2}=(c \Delta t)^{2}-(\Delta x)^{2}
$$

this is called an "invariant"
\Rightarrow same value in all reference frames (as long as they are inertial, $v=$ constant)
Special Relativity:
relativity \Rightarrow only relative velocities matter and there is no absolute velocity
special \Rightarrow velocity is constant

Loventy coordinate transformations
relative velocity is along x direction z is out of page

Galileo: transform from O^{\prime} to of hame:

$$
\left.\begin{array}{l}
x=x^{\prime}+v t \\
y=y^{\prime} \\
z=z^{\prime} \\
t=t^{\prime}
\end{array}\right\} \perp \text { to direction of motion }
$$

$$
\left.\begin{array}{l}
x^{\prime}=x-v t \\
y^{\prime}=y \\
z^{\prime}=z \\
t^{\prime}=t
\end{array}\right\} \perp \text { to direction of motion }
$$

Relativistic, 2^{\prime} to 0$]$

$$
\begin{aligned}
& x=\gamma\left(x^{\prime}+\beta c t^{\prime}\right) \\
& y=y^{\prime} \\
& z=z^{\prime} \\
& c z=\gamma\left(c t^{\prime}+\beta x^{\prime}\right) \\
& 0 \\
& x^{\prime}=\gamma(x-\beta c t) \\
& y^{\prime}=y \\
& z^{\prime}=z \\
& c t^{\prime}=\gamma(c t-\beta x)
\end{aligned}
$$

note: - write time as ct so it has same units as space $\Rightarrow 4-D$ space-time

- motion along x "mixes" space it time
- fr $\beta \rightarrow 0, \gamma \rightarrow 1$, reduces to Galilean

4-vector:
in space, 3 -vector $\vec{r}=(x, y, z)$
now we are in 4-D so 4-vector will be

$$
x=(c t, \vec{r}) \text { shorthand for }(c t, x, y, z)
$$

an "event" is a $q-D$ coordinate (space st time)
in 3-D space, dist Between coordinates is invariant wriespect to coordinate transformations (pick any coordinate system, same Δr)

in 4-D space-time the inariant is:

$$
\begin{aligned}
\Delta R^{2} & =c^{2} \Delta t^{2}-\Delta r^{2} \\
& =c^{2}\left(\Delta t^{\prime}\right)^{2}-\left(\Delta r^{\prime}\right)^{2}
\end{aligned}
$$

or any other coordinate
note: an "event" is something that happens at a position x s time t
we write $E_{1}=\left(c t, x_{1}\right)$ coordinates
\Rightarrow for $2^{n d}$ event we have $E_{2}=\left(c t_{2}, x_{2}\right)$
then $D R^{2}=(c \Delta t)^{2}-x^{2}$ is invariant in the proper frame, a time interval ΔE happens at a fired place
So $\Delta R^{2}=(c \Delta \tau)^{2}=\left((c \Delta t)^{2},\left(\Delta x^{\prime}\right)^{2}\right)$
so $\Delta R^{2}=$ pepper time interval!

Velocity transformation

- frame D^{\prime} moves w/vel v in frame O
- in D^{\prime} something moves along direction of motion wive locity u^{2}

ex: you are in an airplane moving us vel o and you throw a sal down the aisle w (velocity u^{\prime} in the airplane's frame
\Rightarrow what does someone on the ground measure? call that velocity U
x marks the position of the ball

$$
\begin{aligned}
& x=\gamma\left(x^{\prime}+\beta c t^{\prime}\right) \\
& c t=\gamma\left(c t^{\prime}+\beta x^{\prime}\right)
\end{aligned}
$$

and $u=\frac{d x}{d t}$

$$
\begin{aligned}
d x & =\gamma\left(d x^{\prime}+\beta c d t^{\prime}\right) \\
c d t & =\gamma\left(c d t^{\prime}+\beta d x^{\prime}\right)
\end{aligned}
$$

then $\frac{d x}{c d t}=\frac{d x^{\prime}+\beta c d t^{\prime}}{c d t^{\prime}+\beta d x^{\prime}} \cdot \frac{1 / d t^{\prime}}{1 / d t^{\prime}}$

$$
\begin{aligned}
& =\frac{\frac{d x^{\prime}}{d t}+\beta c}{c+\beta \frac{d x^{\prime}}{d t}} \\
& u^{\prime}=\frac{d x^{\prime}}{d t}
\end{aligned}
$$

so $\frac{d c}{c d t}=\frac{u^{\prime}+\beta c}{c+\beta u^{\prime}}$
or $u=\frac{u^{\prime} c+\beta c^{2}}{c+\beta u^{\prime}}=\frac{u^{\prime}+\beta c}{1+\beta u^{\prime} / c}$

$$
\text { so } \quad \frac{\beta c=v}{u=\frac{u^{\prime}+v}{1+\frac{v u^{\prime}}{c^{2}}}}
$$

check: if instead of throwing a ball w/vel u^{\prime} we shine a light, then $u^{\prime}=c$

$$
u=\frac{c+v}{1+v / c}=\frac{c(1+v[c)}{1+v[c}=c \text { yes? }
$$

velocity do light is the same in both frames
ex: spaceship goes at $v=0.8 \mathrm{C}$ in earth lame if throws a probe forward at $u^{\prime}=0 . \overline{S c}$

$$
\text { in earth's [rome } \begin{aligned}
u & =\frac{u^{\prime}+v}{1+u^{\prime} v 1 c^{2}} \\
& =\left(\frac{0.5+0.8}{1+0.5 \times 0.8}\right) c \\
& =0.93 \mathrm{C}
\end{aligned}
$$

now take $\gamma=\frac{1}{\sqrt{1-\beta^{2}}}$ and unravel,

$$
\gamma^{2}=\frac{1}{1-\beta^{2}} \Rightarrow \gamma^{2}-\gamma^{2} \beta^{2}=1
$$

$\beta=v k$ so this is $\gamma^{2} c^{2}-\gamma^{2} v^{2}=c^{2}$
this looks like an invariant!
remember $(c t)^{2}-x^{2}=$ same value in all names
if we define 4 -velocity like this

$$
v=(\gamma c, \gamma \bar{v})
$$

then the inariant is c^{2}
now multiply by m_{0}, the mass of an object
$M_{0} \equiv$ rest mass \rightarrow mass as measured in the proper frame
then $P=m_{0} V=\left(m_{0} \gamma c, m_{0} \gamma \vec{v}\right)$
this looks like the 4-D analog of momentum invariant is $m_{0}^{2} c^{2}$:

$$
m_{0}^{2} \gamma^{2} c^{2}-m_{0}^{2} \gamma^{2} v^{2}=m_{0}^{2} c^{2}
$$

let $E=m_{0} \gamma c^{2}$ relativistic energy
$p=\operatorname{morv}$ " momentum
then the invariant is

$$
\begin{aligned}
& \left(m_{0} \gamma c\right)^{2} \cdot c^{2}-\left(m_{0} r v\right)^{2} c^{2}=\left(m_{0} c\right)^{2} c^{2} \\
& \left(m_{0} r c^{2}\right)^{2}-\left(m_{0} r v\right)^{2} c^{2}=\left(m_{0} c\right)^{2} \\
& \operatorname{li}^{2} \\
& E^{2}-p^{2} c^{2}=\left(m_{0} c^{2}\right)^{2}
\end{aligned}
$$

notice $m_{0} \mathrm{C}^{2}$ is independent of velocity!
write $E=\sqrt{p^{2} c^{2}+\left(m_{0} c^{2}\right)^{2}}=m_{0} c^{2} \sqrt{1+\left(\frac{p c}{w_{0} c^{2}}\right)^{2}}$
the term $\frac{p c}{m_{0} c^{2}}$ is always small except when $\beta \rightarrow l\left(p=\gamma m_{0} v\right)$
so expand: $\left(1+x^{2}\right)^{1 / 2} \sim 1+\frac{x^{2}}{2}$

$$
\text { So } \begin{aligned}
E & \rightarrow m_{0}^{2} c^{2}\left(1+\left(\frac{p c}{2 m_{0} c^{2}}\right)^{2}\right) \\
& =m_{0} c^{2}+\frac{p^{2} c^{2}}{2 m_{0} c^{2}} \\
& =m_{0} c^{2}+\frac{p^{2}}{2 m_{0}^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{p^{2}}{2 m_{0}^{2}}=\frac{m_{0}^{2} v^{2}}{2 m_{0}^{2}}=\frac{1}{2} m v^{2} \equiv \text { Kinetic } \\
& \text { energy } \\
& \text { so } E=m_{0} c^{2}+K E \\
& \text { rest mass } \\
& \text { energy }
\end{aligned}
$$

from above: $E=M_{0} \gamma c^{2}$ so we write $M=\gamma M_{0}$ to get famous formula

$$
E=m c^{2}
$$

What does this formula mean?

- when $\gamma=1 \quad(\beta=0), E=m_{0} C^{2}$ this is called rest-energy All "particles that have mass have an "internal" rest energy even if they are not moving (in their proper frame)
Ex: I gm particle at rest

$$
\begin{aligned}
E & =m c^{2}=10^{-3} \mathrm{bg} \cdot\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{2} \\
& =9 \times 10^{13} \mathrm{~J} E \text { enormous ? }
\end{aligned}
$$

note: $1 \mathrm{BT}=1055 \mathrm{~J}$ so 1 gram contains:

$$
\begin{aligned}
E & =2 \times 10^{13} \mathrm{~J} * \frac{1 \text { BTU }}{10555}=8.5 \times 10^{10} \mathrm{BTU} \\
& =0.085 \text { Trillion BTU }
\end{aligned}
$$

in 2018, state of MD used 1400 Trillion BTU so is T BTU* $\frac{\mathrm{lg}}{.085 \text { TET }}=165 \mathrm{gm}-\frac{1}{3}$ pound!
$\frac{1}{3}$ pound of mass contains enough mass-energy to power all of MD for a year
The rest mass energy is the energy of something in the proper frame

- if a mass m_{0} moves u/velocity u in 0$]$ $E=M_{0} C^{2}$ in proper frame 0^{\prime} $\beta=v / C \quad$ i $\gamma=\frac{1}{\sqrt{1-\beta^{2}}}$ vel δ o' in 0 energy in 0 is given by

$$
E^{2}=\left(m_{0} c^{2}\right)+(p c)^{2}
$$

where $E=\gamma m_{0} C^{2}$ i $p=\gamma m u$
if $P C \ll M_{0} C^{2}$ Hen can write

$$
E=m_{0} c^{2}+\xi E \quad K E=\frac{1}{2} m v^{2}
$$

Os usual
note: some physicists say $E=m c^{2}$
where $m=\gamma m_{0}$ is the mass
Then when you add energy, it speeds up and γ increases.
Does this mean mass increases? Well, it's flue that $E=m_{0} C^{2}$ and it you were on 0 and measmed mass If particle in ${ }^{\prime}$ you would measme

$$
m=\gamma m_{0}
$$

But mass isu't really increasing. γ is increasing?
so as you add energy, γ increases but velocity increases slowly and will never get excectly to $\beta=6$

Here is a plot of β us γ

$$
\begin{aligned}
& p=\gamma m_{0} v=\gamma \beta m_{0} c \text { and } E=\gamma m_{0} c^{2} \\
& E^{2}=(p c)^{2}+\left(m_{0} c^{2}\right)^{2} \\
& \left(\gamma m_{0} c^{2}\right)^{2}=\left(\gamma \beta m_{0} c^{2}\right)^{2}+\left(m_{0} c^{2}\right)^{2}
\end{aligned}
$$

cancel out m_{0}^{2} everywhere:

$$
\gamma^{2} c^{4}=\gamma^{2} \beta^{2} c^{4}+c^{4}
$$

divide by c^{4} :

$$
\begin{array}{r}
\gamma^{2}=\gamma^{2} \beta^{2}+1 \\
\gamma^{2}\left(1-\beta^{2} \partial=1\right. \\
\gamma^{2}=\frac{1}{1-\beta^{2}}
\end{array}
$$

ex: election mass $=9.109 \times 10^{-31} \mathrm{~kg}$ rest mass

$$
\begin{aligned}
m_{e} & =9.109 \times 10^{-31} \mathrm{~kg} \\
m_{e} c^{2} & =9.109 \times 10^{-31} \mathrm{~kg}\left(3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2} \\
& =8.198 \times 10^{-14} \mathrm{~J}
\end{aligned}
$$

remember previous chapter, cV electron volt as a measure of energy:
a changed particle w/ change of going then a potential change DV will gain ("downhill") or lose ("uphill") an amount of energy $E=q \Delta V$ if $q=+1.6 \times 10^{-19} \mathrm{C}$ \& $\quad \Delta V=1$ volt then

$$
E=1.6 \times 10^{-19} \mathrm{C} \cdot 1 \mathrm{~V}=1.6 \times 10^{-19} \mathrm{~J}
$$

we can define $1 . \mathrm{U}=1.6 \times 10^{-77} \mathrm{~J}$
so rest energy i election will be

$$
\begin{aligned}
E_{0} & =m_{0} c^{2}= \\
& 8.198 \times 10^{-14} \sqrt{*} \frac{1 \mathrm{eV}}{1.6 \times 10^{-17} \mathrm{~V}} \\
& =511 \times 10^{3} \mathrm{eV} \\
10^{3} \mathrm{eV} & =1 \mathrm{keV} \quad \text { thousand } \\
10^{6} \mathrm{eV} & =1 \mathrm{meV} \quad \text { million }
\end{aligned}
$$

$$
10^{9} \mathrm{eV}=1 \mathrm{GeV} \text { billion }
$$

can write $E_{0}=0.5 u \mathrm{MeV}$ oo election nest energy
in any relativity problem we always see
m_{0} with C or c^{2}

$$
\begin{aligned}
& E_{0}=\mu_{0} c^{2} \\
& E=m c^{2} \quad\left(m=\gamma m_{0}\right)
\end{aligned}
$$

so can write $E=\gamma E_{0}$

$$
p=m_{0} \gamma v=m_{0} c \gamma \beta
$$

so $p c=m_{0} c^{2} \gamma \beta=\gamma \beta E_{0}$
thick: use eV for masses si energy \& momentum!
ex: election has $v=2.5 \times 10^{8} \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
\beta & =\frac{2.5 \times 10^{8}}{3 \times 10^{8}}=0.833 \\
\gamma & =\sqrt{\frac{1}{1-\beta^{2}}}=1.81 \\
p & =m_{0}-\gamma=9.109 \times 10^{-36} \mathrm{~kg} * 2.5 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}} * 1.81 \\
& =4.12 \times 10^{-22} \mathrm{~kg} / \mathrm{s} \\
E & =m_{0} c^{2} \gamma=8.198 \times 10^{-14} \mathrm{~J} \cdot 1.81=1.48 \times 10^{-13} \mathrm{~J}
\end{aligned}
$$

now convert to eV

$$
\begin{aligned}
p C & =4.12 \times 10^{-22} * 3 \times 10^{8}=1.24 \times 10^{-13} \mathrm{~J} \\
& =1.24 \times 10^{-13} \mathrm{~J} \times \frac{1 \mathrm{eV}}{1.6 \times 10^{-19}}=7.72 \times 10^{5} \mathrm{eV} \\
& =0.77 \mathrm{MeV} \text { so } P=0.77 \mathrm{MeV} \mathrm{l} \\
E & =1.48 \times 10^{-13} \mathrm{~J} \times \frac{1 \mathrm{eV}}{1.6 \times 10^{-19} \mathrm{~J}}=9.27 \times 10^{5} \mathrm{eV} \\
& =0.93 \mathrm{MeV}
\end{aligned}
$$

no do the proplem in eU from start:

$$
\begin{aligned}
& p=\gamma m_{0} v=\gamma m_{0} c^{2} \cdot \frac{v}{c^{2}}=\underbrace{\gamma\left(m_{0} c^{2}\right)}_{0.54 \mathrm{meV}} \beta l c \\
&=1.81 * 0.511 \mathrm{meV}^{0.5} * 0.83 / c \\
&=0.77 \mathrm{MeV} / c \\
& E=\gamma m_{0} c^{2}=1.81 \times 0.54 \mathrm{MeV}=0.93 \mathrm{MeV} \\
& v o i l a!
\end{aligned}
$$

ax:- a proton and anti-proton move towards each other at equal \& opposite speed v
proton mass is $m_{0}=1.67 \times 10^{-27} \mathrm{~kg}$ anti." " is the same

$$
\begin{aligned}
m_{0} c^{2} & =1.67 \times 10^{-27} \mathrm{~kg} *\left(3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2} \\
& =1.503 \times 10^{-10} \mathrm{~J} * \frac{1 \mathrm{eV}}{1.6 \times 10^{195}}=0.939 \times 10^{9} \mathrm{eV} \\
& =939 \mathrm{MeV}^{2}
\end{aligned}
$$

now when $p i \bar{P}$ (anti-proton) hit their eatise energy gets turned into another particle called the X-particle which has a mass of

$$
m_{\partial x}=5.7 \mathrm{GeV}
$$

what is the energy of the $P \geqq \bar{P}$?
Before: $\quad E_{\text {tot }}=E_{p}+E_{\bar{p}}=\gamma m_{0} c^{2}+\gamma m_{0} c^{2}$

$$
=2 \gamma \mu_{0} c^{2}
$$

$$
\vec{P}_{\text {tot }}=\vec{P}_{P}-\vec{P}_{\bar{P}}=0 \quad \text { opposite directions }
$$

After: $E_{0}=M_{0_{x}} C^{2}$ not moving

$$
E_{0_{x}}=m_{o_{x}} c^{2}=5.7 \mathrm{GeV}=2 \gamma \underbrace{m_{0} C^{2}}_{p}=2 \gamma E_{o p}
$$

so $\gamma=E_{o x} / 2 E_{p}$

$$
\begin{aligned}
E_{0 x} & =5.7 \mathrm{GeV} \\
E_{0 p} & =939 \mathrm{MeV}=0.939 \mathrm{GeV} \\
\text { so } \gamma & =\frac{5.7}{2 \times 0.939}=3.04 \\
\text { so } E_{P}=E_{D} & =\gamma E_{0}=3.04 \times 0.939 \mathrm{GeV}=2.85 \mathrm{GeV}
\end{aligned}
$$

velocity of protons: $\gamma=\frac{1}{\sqrt{1-\beta^{2}}}=3.04$

$$
\begin{aligned}
1-\beta^{2} & =\frac{1}{(3.04)^{2}}=0.108 \\
\beta^{2} & =1-0.108=0.89 \\
\beta & =0.944 \\
v & =\beta C
\end{aligned}=0.944 \times 3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

ex: 2 protons wlequal è opposite velocity collide when they come to rest, energy is converted to a pion vo /EO $=m_{0} c^{\prime}=135 \mathrm{MeV}$ what is initial proton velocity?
BEFORE: $\quad E=2 E_{p}=2 \gamma E_{O p}$
FinAl: $E=2 E_{0 p}+E_{0 \pi}$

$$
\text { so } \begin{aligned}
& 2 \gamma m_{o p} c^{2}=2 m_{0 p} c^{2}+m_{\partial \pi} c^{2} \\
& 2 \gamma m_{p}=2 m_{p}+m_{\pi} \\
& \gamma=\frac{2 m_{p}+m_{\pi}}{2 m_{p}}=1+\frac{m_{\pi}}{2 m_{p}} \\
&=1+\frac{135}{2.939}=1.072 \\
& \gamma^{2}=\frac{1}{1-\beta^{2}}\left(1-\beta^{2}\right) \gamma^{2}=1 \\
& \beta^{2} \gamma^{2}=\gamma^{2}-1 \\
& \beta^{2}=\frac{\gamma^{2}-1}{\gamma^{2}} \\
& \text { so } \beta=\sqrt{\frac{(1.072)^{2}-1}{(1.072)^{2}}}=0.36 \\
& v=\beta c=0.36 \times 3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}=1.08 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

